高阶提示工程
- 注:需要有一定的英文功底
1. Chain-of-Thought (CoT)
概念:CoT是一种逐步推理的方法,通过一系列连贯的步骤引导模型得出结论,就像解一道数学题时的步骤。
类比:想象你在解一道数学题,你需要一步步列出每个计算过程。每个步骤都依赖于前一个步骤,直到最终得出答案。
示例:
Prompt: “What is 15% of 200?”
Thought process:
- “15% of 200 is calculated by first finding 10%.”
- “10% of 200 is 20.”
- “Then we find 5%, which is half of 10%.”
- “5% of 200 is 10.”
- “Adding these together, 15% of 200 is 20 + 10, which is 30.”
2. Tree-of-Thought (ToT)
概念:ToT是一种分支推理的方法,每个推理步骤可以生成多个分支,类似于决策树,使模型可以并行探索多个路径。
类比:想象你在探索一个迷宫,你可以同时尝试不同的路径,记录每个路径的进展,直到找到出口。
示例:
Prompt: “Find the optimal route from A to B in the city.”
Thought process:
- “Consider the route via Main Street.”
- “Consider the route via Second Avenue.”
- “Evaluate traffic conditions and travel time for each route.”
- “Select the route with the shortest travel time.”
3. Graph-of-Thought (GoT)
概念:GoT将推理过程建模为有向图,每个节点代表一个思维步骤,节点之间的边表示推理路径,从而增强模型的复杂推理能力。
类比:想象你在构建一个关系图,图中的每个节点代表一个任务或概念,节点之间的连线表示它们之间的关系和影响。
示例:
Prompt: “Analyze the impact of a new policy on the economy.”
Thought process:
- “Identify key economic indicators affected by the policy.”
- “Create a graph with nodes representing each indicator.”
- “Draw edges showing how the policy impacts each indicator.”
- “Analyze the overall impact based on the connections and interactions.”
4. Skeleton-of-Thought (SoT)
概念:SoT是一种先生成答案的骨架(主要要点),然后并行扩展每个要点的方法,大幅减少了解码延迟。
类比:想象你在写一篇文章,先列出主要段落的主题句,然后分别扩展每个主题句的内容。
示例:
Prompt: “Write an essay about the benefits of exercise.”
Thought process:
- “Outline: Introduction, Physical Benefits, Mental Benefits, Conclusion.”
- “Expand each point in parallel:”
- “Introduction: Exercise is essential for a healthy lifestyle.”
- “Physical Benefits: Improves cardiovascular health, builds muscle strength.”
- “Mental Benefits: Reduces stress, improves mood.”
- “Conclusion: Regular exercise leads to overall well-being.”
5. Algorithm-of-Thought (AoT)
概念:AoT通过结合搜索算法示例,克服CoT的局限性,增强探索和问题解决能力。
类比:想象你在编写一个程序,使用不同的算法来解决问题,每个算法提供不同的路径和策略。
示例:
Prompt: “Find the shortest path in a graph using AoT.”
Thought process:
- “Consider using Dijkstra’s algorithm for shortest path finding.”
- “Evaluate other algorithms like A* and Bellman-Ford.”
- “Compare the efficiency and results of each algorithm.”
- “Select the algorithm that provides the optimal path with minimal computation.”
总结论文表
- 想要更系统,专业,深入的了解提示词工程就离不开专业的论文,如果自行阅读困难,可以使用工具
来辅助阅读,当然也可以不用并使用免费的 DeepL翻译等….。这个工具是目前最强的在线学术 AI之一,具备翻译,解释,类比,预测与评估等功能…
标题 | 概要 | 论文链接 |
---|---|---|
Skeleton-of-Thought: Large Language Models Can Do Parallel Decoding | 介绍了Skeleton-of-Thought (SoT)的概念,这是一种允许大型语言模型并行解码的方法,通过首先生成答案的框架,然后并行扩展每个要点,显著减少了解码延迟。 | https://ar5iv.labs.arxiv.org/html/2307.15337 |
Graph of Thoughts: Solving Elaborate Problems with Large Language Models | 介绍了GoT,这是一种将LLM推理过程建模为有向图的框架,以增强传统CoT和ToT范式之外的问题解决能力。 | https://ar5iv.labs.arxiv.org/html/2308.09687 |
Beyond Chain-of-Thought, Effective Graph-of-Thought Reasoning in Large Language Models | 提出了一种GoT推理方法,使用图注意网络对思维图进行编码,旨在提高LLM的复杂推理任务能力。 | https://ar5iv.labs.arxiv.org/html/2305.16582 |
Algorithm of Thoughts: Enhancing Exploration of Ideas in Large Language Models | 讨论了AoT,重点在于通过整合搜索算法启发的搜索过程示例,克服CoT的局限性,以增强探索和问题解决能力。 | https://ar5iv.labs.arxiv.org/html/2308.10379 |
Aggregated Contextual Transformations for High-Resolution Image Inpainting | 介绍了AOT-GAN,这是一种基于GAN的模型,利用聚合上下文转换(AOT块)进行改进的高分辨率图像修复。 | https://ar5iv.labs.arxiv.org/html/2104.01431 |
Automatic Prompt Augmentation and Selection with Chain-of-Thought from Labeled Data | 探讨了从标记数据中自动选择CoT示例,以优化模型在不同任务中的性能。 | https://ar5iv.labs.arxiv.org/html/2302.12822 |
Automatic Chain of Thought Prompting in Large Language Models | 研究了自动CoT提示,比较了零样本、手动和随机查询生成策略在推理任务中的表现。 | https://ar5iv.labs.arxiv.org/html/2210.03493 |
Towards Revealing the Mystery behind Chain of Thought: A Theoretical Perspective | 提供了关于变压器直接生成复杂推理任务答案能力的理论分析。 | https://ar5iv.labs.arxiv.org/html/2305.15408 |
Interleaving Retrieval with Chain-of-Thought Reasoning for Knowledge-Intensive Multi-Step Questions | 介绍了一种将CoT推理与文档检索结合的方法,以提高多步问题的表现。 | https://ar5iv.labs.arxiv.org/html/2212.10509 |
Tab-CoT: Zero-shot Tabular Chain of Thought | 提出了一种用于零样本环境的表格式CoT提示,促进更结构化的推理。 | https://ar5iv.labs.arxiv.org/html/2305.17812 |
Faithful Chain-of-Thought Reasoning | 描述了一种确保CoT推理过程忠实性的方法,用于各种复杂任务。 | https://ar5iv.labs.arxiv.org/html/2301.13379 |
Towards Understanding Chain-of-Thought Prompting: An Empirical Study of What Matters | 进行了一项实证研究,以了解各种因素对CoT提示有效性的影响。 | https://ar5iv.labs.arxiv.org/html/2212.10001 |
Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models | 评估了一种结合计划与CoT推理的新提示策略,以提高零样本表现。 | https://ar5iv.labs.arxiv.org/html/2305.04091 |
Meta-CoT: Generalizable Chain-of-Thought Prompting in Mixed-task Scenarios with Large Language Models | 介绍了Meta-CoT,这是一种在不同类型推理任务中泛化CoT提示的方法。 | https://ar5iv.labs.arxiv.org/html/2310.06692 |
Large Language Models are Zero-Shot Reasoners | 讨论了大型语言模型的固有零样本推理能力,强调了CoT提示的作用。 | https://ar5iv.labs.arxiv.org/html/2205.11916 |
暂无评论内容